Support Approximations Using Bonferroni-Type Inequalities

نویسندگان

  • Szymon Jaroszewicz
  • Dan A. Simovici
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper Bounds for Bivariate Bonferroni-type Inequalities Using Consecutive Events

Let A1, A2, . . . , Am and B1, B2, . . . , Bn be two sequences of events on the same probability space. Let X = Xm(A) and Y = Yn(B), respectively, denote the numbers of those Ai’s and Bj ’s which occur. We establish new bivariate Bonferroni-type inequalities using consecutive events and deduce a known result.

متن کامل

Bonferroni-type inequalities and binomially bounded functions

We present a unified approach to an important subclass of Bonferroni-type inequalities by considering so-called binomially bounded functions. Our main result associates with each binomially bounded function a Bonferroni-type inequality. By appropriately choosing this function, several well-known and new results are deduced.

متن کامل

Optimized Bonferroni Approximations of Distributionally Robust Joint Chance Constraints

A distributionally robust joint chance constraint involves a set of uncertain linear inequalities which can be violated up to a given probability threshold , over a given family of probability distributions of the uncertain parameters. A conservative approximation of a joint chance constraint, often referred to as a Bonferroni approximation, uses the union bound to approximate the joint chance ...

متن کامل

BONFERRONI-TYPE INEQUALITIES; CHEBYSHEV-TYPE INEQUALITIES FOR THE DISTRIBUTIONS ON [0, n]

Abs t rac t . An elementary "majorant-minorant method" to construct the most stringent Bonferroni-type inequalities is presented. These are essentially Chebyshev-type inequalities for discrete probability distributions on the set {0, 1 , . . . , n}, where n is the number of concerned events, and polynomials with specific properties on the set lead to the inequalities. All the known resuits are ...

متن کامل

Inequalities of Bonferroni-galambos Type with Applications to the Tutte Polynomial and the Chromatic Polynomial

In this paper, we generalize the classical Bonferroni inequalities and their improvements by Galambos to sums of type ∑ I⊆U (−1)|I|f(I) where U is a finite set and f : 2 → R. The result is applied to the Tutte polynomial of a matroid and the chromatic polynomial of a graph.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002